Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 61(34): 10309-10319, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36606797

RESUMO

We present near-field radio holography measurements of the Simons Observatory Large Aperture Telescope Receiver optics. These measurements demonstrate that radio holography of complex millimeter-wave optical systems comprising cryogenic lenses, filters, and feed horns can provide detailed characterization of wave propagation before deployment. We used the measured amplitude and phase, at 4 K, of the receiver near-field beam pattern to predict two key performance parameters: 1) the amount of scattered light that will spill past the telescope to 300 K and 2) the beam pattern expected from the receiver when fielded on the telescope. These cryogenic measurements informed the removal of a filter, which led to improved optical efficiency and reduced sidelobes at the exit of the receiver. Holography measurements of this system suggest that the spilled power past the telescope mirrors will be less than 1%, and the main beam with its near sidelobes are consistent with the nominal telescope design. This is the first time such parameters have been confirmed in the lab prior to deployment of a new receiver. This approach is broadly applicable to millimeter and submillimeter instruments.

3.
Appl Opt ; 60(4): 823-837, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33690389

RESUMO

We present geometrical and physical optics simulation results for the Simons Observatory Large Aperture Telescope. This work was developed as part of the general design process for the telescope, allowing us to evaluate the impact of various design choices on performance metrics and potential systematic effects. The primary goal of the simulations was to evaluate the final design of the reflectors and the cold optics that are now being built. We describe nonsequential ray tracing used to inform the design of the cold optics, including absorbers internal to each optics tube. We discuss ray tracing simulations of the telescope structure that allow us to determine geometries that minimize detector loading and mitigate spurious near-field effects that have not been resolved by the internal baffling. We also describe physical optics simulations, performed over a range of frequencies and field locations, that produce estimates of monochromatic far-field beam patterns, which in turn are used to gauge general optical performance. Finally, we describe simulations that shed light on beam sidelobes from panel gap diffraction.

4.
Sci Rep ; 10(1): 527, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31949245

RESUMO

Humans rely on their sense of touch to interact with the environment. Thus, restoring lost tactile sensory capabilities in amputees would advance their quality of life. In particular, texture discrimination is an important component for the interaction with the environment, but its restoration in amputees has been so far limited to simplified gratings. Here we show that naturalistic textures can be discriminated by trans-radial amputees using intraneural peripheral stimulation and tactile sensors located close to the outer layer of the artificial skin. These sensors exploit the morphological neural computation (MNC) approach, i.e., the embodiment of neural computational functions into the physical structure of the device, encoding normal and shear stress to guarantee a faithful neural temporal representation of stimulus spatial structure. Two trans-radial amputees successfully discriminated naturalistic textures via the MNC-based tactile feedback. The results also allowed to shed light on the relevance of spike temporal encoding in the mechanisms used to discriminate naturalistic textures. Our findings pave the way to the development of more natural bionic limbs.

5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2017: 1938-1941, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29060272

RESUMO

A biomedical interface that combines into a single and compact device the recording of biopotentials and the electrical stimulation of neural fibres is presented. It is intended for enabling the control over a robotic hand and for restoring the sensory feedback in amputees by directly interfacing the peripheral nervous system (PNS) in closed-loop. A modular system consisting in one or more independent 16-channels bidirectional units was conceived. Each module is based on three 0.35µm bulk-CMOS integrated circuits (ICs): a recording unit, a High-Voltage (HV) stimulator and a HV booster. A tunable bandwidth (10Hz-8kHz) allows the recording IC to acquire both electroneurographyc (ENG) and electromiographyc (EMG) signals with a programmable gain up to 43.5dB. The signals are then converted into a digital domain by means of a ΣΔ converter. Due to the typical high impedance at the electrode-tissue interface, a programmable HV booster that increases the stimulation voltage up to 19V was designed. It is directly controlled by the stimulation module that generates current-based pulses with a programmable amplitude and pulse-width. The whole system was validated by means of in-vivo experiments in rats.


Assuntos
Sistema Nervoso Periférico , Amputados , Animais , Estimulação Elétrica , Ratos
6.
Biomed Microdevices ; 18(2): 35, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27007860

RESUMO

The prototype of an electronic bi-directional interface between the Peripheral Nervous System (PNS) and a neuro-controlled hand prosthesis is presented. The system is composed of 2 integrated circuits: a standard CMOS device for neural recording and a HVCMOS device for neural stimulation. The integrated circuits have been realized in 2 different 0.35µ m CMOS processes available from ams. The complete system incorporates 8 channels each including the analog front-end, the A/D conversion, based on a sigma delta architecture and a programmable stimulation module implemented as a 5-bit current DAC; two voltage boosters supply the output stimulation stage with a programmable voltage scalable up to 17V. Successful in-vivo experiments with rats having a TIME electrode implanted in the sciatic nerve were carried out, showing the capability of recording neural signals in the tens of microvolts, with a global noise of 7µ V r m s , and to selectively elicit the tibial and plantar muscles using different active sites of the electrode.


Assuntos
Estimulação Elétrica/métodos , Eletricidade , Próteses Neurais , Sistema Nervoso Periférico/fisiologia , Animais , Condutividade Elétrica , Estimulação Elétrica/instrumentação , Eletrodos Implantados , Desenho de Equipamento , Metais/química , Óxidos/química , Ratos , Semicondutores
7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 1967-1970, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28268714

RESUMO

This paper presents an implantable package aimed at hosting a bidirectional neural interface for neural prosthetic applications. The package has been conceived to minimize the invasivity for the patient, for this reason a cylindrical container with an outer diameter of 7 mm and a length of 21 mm has been designed. The package, realized in alumina (Al2O3), presents 32 hermetic feedthroughs located at the top and bottom base of the cylinder. The hermetic housing has been assembled using a low-temperature soldering method based on a previous platinum/gold (Pt/Au) metallization of the ceramic parts. The package's hermeticity has been successfully proved by means of in-vitro tests, exhibiting an increase in the inner relative humidity of 20 %RH over 75 days of observation.


Assuntos
Próteses e Implantes , Óxido de Alumínio , Cerâmica , Embalagem de Medicamentos , Humanos , Platina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...